Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 337: 546-556, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375687

RESUMO

Obstructed blood flow and erratic blood supply in the tumor region attenuate the distribution and accumulation of nanomedicines in the tumor. Therefore, improvement of these conditions is crucial for efficient drug delivery. In this study, we designed and synthesized a novel N-(2-hydroxypropyl)methacrylamide (HPMA)-based copolymer conjugate of BK, which possessed adequate systemic stability and tumor-selective action required to improve the accumulation of nanomedicines in the tumor. Levulinoyl-BK (Lev-BK) was conjugated to an HPMA-based polymer via an acid-cleavable hydrazone bond (P-BK). An acid-responsive release of Lev-BK from P-BK was observed, and P-BK alone after intradermal application showed below 10% of the BK activity, thus proving a reduction in the vascular permeability activity of BK when attached to the polymer carrier. P-BK pre-treatment improved blood flow in the tumor tissue by 1.4-1.7-fold, which was maintained for more than 4 h. In addition, P-BK pre-treatment increased the tumor accumulation of pegylated liposomal doxorubicin (PLD) by approximately 3-fold. Furthermore, P-BK pre-treatment led to superior antitumor activity of PLD and significantly improved the survival of tumor-bearing mice. The release of BK from P-BK in the acidic milieu of the tumor was a prerequisite for P-BK to exert its effect, as the vascular permeability enhancing activity of P-BK was negligible. Collectively, P-BK pre-treatment improved intratumoral blood flow and augmented tumor accumulation of nanomedicine, thereby resulting in a significant suppression of tumor growth. Therefore, these findings demonstrate that P-BK is a potential concomitant drug for improving the tumor delivery of nanomedicines.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/uso terapêutico , Bradicinina/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Portadores de Fármacos/uso terapêutico , Metacrilatos , Camundongos , Nanomedicina , Neoplasias/tratamento farmacológico , Polímeros/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...